Latin directed triple systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10126334" target="_blank" >RIV/00216208:11320/12:10126334 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.disc.2011.04.025" target="_blank" >http://dx.doi.org/10.1016/j.disc.2011.04.025</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.disc.2011.04.025" target="_blank" >10.1016/j.disc.2011.04.025</a>
Alternative languages
Result language
angličtina
Original language name
Latin directed triple systems
Original language description
It is well known that, given a Steiner triple system, a quasigroup can be formed by defining an operation by the identities x . x = x and x . y = z, where z is the third point in the block containing the pair {x, y}. The same is true for a Mendelsohn triple system, where the pair (x, y) is considered to be ordered. But it is not true in general for directed triple systems. However, directed triple systems which form quasigroups under this operation do exist. We call these Latin directed triple systems,and in this paper we begin the study of their existence and properties.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0296" target="_blank" >GA201/09/0296: Nonassociativity and multilinearity</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete Mathematics
ISSN
0012-365X
e-ISSN
—
Volume of the periodical
312
Issue of the periodical within the volume
3
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
11
Pages from-to
597-607
UT code for WoS article
000299148300016
EID of the result in the Scopus database
—