Descriptive properties of elements of biduals of Banach spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10127326" target="_blank" >RIV/00216208:11320/12:10127326 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4064/sm209-1-6" target="_blank" >http://dx.doi.org/10.4064/sm209-1-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4064/sm209-1-6" target="_blank" >10.4064/sm209-1-6</a>
Alternative languages
Result language
angličtina
Original language name
Descriptive properties of elements of biduals of Banach spaces
Original language description
If E is a Banach space, any element x** in its bidual E** is an affine function on the dual unit ball B-E* that might possess a variety of descriptive properties with respect to the weak* topology. We prove several results showing that descriptive properties of x** are quite often determined by the behaviour of x** on the set of extreme points of B-E*, generalizing thus results of J. Saint Raymond and F. Jellett. We also prove a result on the relation between Baire classes and intrinsic Baire classes ofL-1-preduals which were introduced by S. A. Argyros, G. Godefroy and H. P. Rosenthal (2003). Also, several examples witnessing natural limits of our positive results are presented.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F07%2F0388" target="_blank" >GA201/07/0388: Modern methods in potential theory and function spaces</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Studia Mathematica
ISSN
0039-3223
e-ISSN
—
Volume of the periodical
209
Issue of the periodical within the volume
1
Country of publishing house
PL - POLAND
Number of pages
29
Pages from-to
71-99
UT code for WoS article
000306256000006
EID of the result in the Scopus database
—