Note on the Concentration-Compactness Principle for generalized Moser-Trudinger inequalities
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10127331" target="_blank" >RIV/00216208:11320/12:10127331 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.2478/s11533-011-0102-3" target="_blank" >http://dx.doi.org/10.2478/s11533-011-0102-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2478/s11533-011-0102-3" target="_blank" >10.2478/s11533-011-0102-3</a>
Alternative languages
Result language
angličtina
Original language name
Note on the Concentration-Compactness Principle for generalized Moser-Trudinger inequalities
Original language description
Motivated by Theorem I. 6 and Remark I. 18 of [Lions P.-L., The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana, 1985, 1(1), 145-201] and by the results of [Cerny R., Cianchi A., Hencl S., Concentration-Compactness Principle for Moser-Trudinger inequalities: new results and proofs, Ann. Mat. Pura Appl. (in press), DOI: 10.1007/s10231-011-0220-3], we give a sharp estimate of the exponent concerning the Concentration-Compactness Principle forthe embedding of the Orlicz-Sobolev space (W0Ln)-L-1 log(alpha) L(Omega) into the Orlicz space corresponding to a Young function that behaves like exp t(n/(n-1-alpha)) for large t. We also give the result for the case of the embedding into double and other multiple exponential spaces.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Central European Journal of Mathematics
ISSN
1895-1074
e-ISSN
—
Volume of the periodical
10
Issue of the periodical within the volume
2
Country of publishing house
DE - GERMANY
Number of pages
13
Pages from-to
590-602
UT code for WoS article
000301047500014
EID of the result in the Scopus database
—