Model category structures arising from Drinfeld vector bundles
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10128137" target="_blank" >RIV/00216208:11320/12:10128137 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.aim.2012.06.011" target="_blank" >http://dx.doi.org/10.1016/j.aim.2012.06.011</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aim.2012.06.011" target="_blank" >10.1016/j.aim.2012.06.011</a>
Alternative languages
Result language
angličtina
Original language name
Model category structures arising from Drinfeld vector bundles
Original language description
We present a general construction of model category structures on the category C(Qco(X)) of unbounded chain complexes of quasi-coherent sheaves on a semi-separated scheme X. The construction is based on making compatible the filtrations of individual modules of sections at open affine subsets of X. It does not require closure under direct limits as previous methods. We apply it to describe the derived category D(Qco(X)) via various model structures on C(Qco(X)). As particular instances, we recover recent results on the flat model structure for quasi-coherent sheaves. Our approach also includes the case of (infinite-dimensional) vector bundles, and restricted Drinfeld vector bundles. Finally, we prove that the unrestricted case does not induce a model category structure as above in general.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0816" target="_blank" >GA201/09/0816: Algebraic Methods in the Representation Theory (Approximations, Realizations, and Constraints)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Mathematics
ISSN
0001-8708
e-ISSN
—
Volume of the periodical
231
Issue of the periodical within the volume
3-4
Country of publishing house
US - UNITED STATES
Number of pages
22
Pages from-to
1417-1438
UT code for WoS article
000308783400010
EID of the result in the Scopus database
—