All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Beyond homothetic polygons: recognition and maximum clique

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10128144" target="_blank" >RIV/00216208:11320/12:10128144 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-642-35261-4_64" target="_blank" >http://dx.doi.org/10.1007/978-3-642-35261-4_64</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-642-35261-4_64" target="_blank" >10.1007/978-3-642-35261-4_64</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Beyond homothetic polygons: recognition and maximum clique

  • Original language description

    We study the Clique problem in classes of intersection graphs of convex sets in the plane. The problem is known to be NP-complete in convex-sets intersection graphs and straight-line-segments intersection graphs, but solvable in polynomial time in intersection graphs of homothetic triangles. We extend the latter result by showing that for every convex polygon P with k sides, every n-vertex graph which is an intersection graph of homothetic copies of P contains at most n 2k inclusion-wise maximal cliques. We actually prove this result for a more general class of graphs, so called k DIR -CONV, which are intersection graphs of convex polygons whose all sides are parallel to at most k directions. We further provide lower bounds on the numbers of maximal cliques, discuss the complexity of recognizing these classes of graphs and present relationship with other classes of convex-sets intersection graphs.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GEGIG%2F11%2FE023" target="_blank" >GEGIG/11/E023: Graph Drawings and Representations</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Lecture Notes in Computer Science

  • ISSN

    0302-9743

  • e-ISSN

  • Volume of the periodical

    7676

  • Issue of the periodical within the volume

    7676

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    10

  • Pages from-to

    619-628

  • UT code for WoS article

  • EID of the result in the Scopus database