Numerical Solution of Reaction-Diffusion Equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10131023" target="_blank" >RIV/00216208:11320/12:10131023 - isvavai.cz</a>
Result on the web
<a href="http://acc-ern.tul.cz/images/journal/sbornik/ACC_Journal_4_2012.pdf" target="_blank" >http://acc-ern.tul.cz/images/journal/sbornik/ACC_Journal_4_2012.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Numerical Solution of Reaction-Diffusion Equations
Original language description
The subject of the presented paper is a mathematical analysis and numerical solution of the system of nonlinear nonstationary reaction-diffusion equations. Firstly, using the invariant region technique, the proof of both the existence and uniqueness of the solution and problem data continuous dependence is carried out. After time discretization of the problem the Galerkin ?nite elements method is applied and a priori error estimates of the method are derived. A suitable mesh adaptivity is discussed as well. The method is ?nally implemented and tested on several examples.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ACC Journal
ISSN
1803-9782
e-ISSN
—
Volume of the periodical
XVIII
Issue of the periodical within the volume
4
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
8
Pages from-to
120-128
UT code for WoS article
—
EID of the result in the Scopus database
—