All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Extending Partial Representations of Function Graphs and Permutation Graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10131345" target="_blank" >RIV/00216208:11320/12:10131345 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-642-33090-2_58" target="_blank" >http://dx.doi.org/10.1007/978-3-642-33090-2_58</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-642-33090-2_58" target="_blank" >10.1007/978-3-642-33090-2_58</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Extending Partial Representations of Function Graphs and Permutation Graphs

  • Original language description

    Function graphs are graphs representable by intersections of continuous real-valued functions on the interval [0,1] and are known to be exactly the complements of comparability graphs. As such they are recognizable in polynomial time. Function graphs generalize permutation graphs, which arise when all functions considered are linear. We focus on the problem of extending partial representations, which generalizes the recognition problem. We observe that for permutation graphs an easy extension of Golumbic's comparability graph recognition algorithm can be exploited. This approach fails for function graphs. Nevertheless, we present a polynomial-time algorithm for extending a partial representation of a graph by functions defined on the entire interval [0,1] provided for some of the vertices. On the other hand, we show that if a partial representation consists of functions defined on subintervals of [0,1], then the problem of extending this representation to functions on the entire interv

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GEGIG%2F11%2FE023" target="_blank" >GEGIG/11/E023: Graph Drawings and Representations</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Lecture Notes in Computer Science

  • ISSN

    0302-9743

  • e-ISSN

  • Volume of the periodical

    7501

  • Issue of the periodical within the volume

    Fall

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    12

  • Pages from-to

    671-682

  • UT code for WoS article

  • EID of the result in the Scopus database