Asymptotic Palm likelihood theory for stationary point processes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10103539" target="_blank" >RIV/00216208:11320/13:10103539 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/article/10.1007%2Fs10463-012-0376-7" target="_blank" >http://link.springer.com/article/10.1007%2Fs10463-012-0376-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10463-012-0376-7" target="_blank" >10.1007/s10463-012-0376-7</a>
Alternative languages
Result language
angličtina
Original language name
Asymptotic Palm likelihood theory for stationary point processes
Original language description
In the present paper, we propose a Palm likelihood approach as a general estimating principle for stationary point processes in Rd for which the density of the second-order factorial moment measure is available in closed form or in an integral representation. Examples of such point processes include the Neyman-Scott processes and the log Gaussian Cox processes. The computations involved in determining the Palm likelihood estimator are simple. Conditions are provided under which the Palm likelihood estimator is strongly consistent and asymptotically normally distributed.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annals of the Institute of Statistical Mathematics
ISSN
0020-3157
e-ISSN
—
Volume of the periodical
65
Issue of the periodical within the volume
2
Country of publishing house
JP - JAPAN
Number of pages
26
Pages from-to
387-412
UT code for WoS article
000313015700007
EID of the result in the Scopus database
—