On relations between chance constrained and penalty function problems under discrete distributions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10127887" target="_blank" >RIV/00216208:11320/13:10127887 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00186-013-0428-7" target="_blank" >http://dx.doi.org/10.1007/s00186-013-0428-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00186-013-0428-7" target="_blank" >10.1007/s00186-013-0428-7</a>
Alternative languages
Result language
angličtina
Original language name
On relations between chance constrained and penalty function problems under discrete distributions
Original language description
We extend the theory of penalty functions to stochastic programming problems with nonlinear inequality constraints dependent on a random vector with known distribution. We show that the problems with penalty objective, penalty constraints and chance constraints are asymptotically equivalent under discretely distributed random parts. We propose bounds on optimal values and convergence of optimal solutions. Moreover, we apply exact penalization under modified calmness property to improve the results.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP402%2F12%2FG097" target="_blank" >GBP402/12/G097: DYME-Dynamic Models in Economics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Methods of Operations Research
ISSN
1432-2994
e-ISSN
—
Volume of the periodical
77
Issue of the periodical within the volume
2
Country of publishing house
DE - GERMANY
Number of pages
13
Pages from-to
265-277
UT code for WoS article
000320843900007
EID of the result in the Scopus database
—