Improved stability and error analysis for a class of local projection stabilizations applied to the Oseen problem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10132879" target="_blank" >RIV/00216208:11320/13:10132879 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1002/num.21706" target="_blank" >http://dx.doi.org/10.1002/num.21706</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/num.21706" target="_blank" >10.1002/num.21706</a>
Alternative languages
Result language
angličtina
Original language name
Improved stability and error analysis for a class of local projection stabilizations applied to the Oseen problem
Original language description
We consider a class of local projection stabilizations with projection spaces defined on (possibly) overlapping sets applied to the Oseen problem. We prove that the underlying bilinear form satisfies an inf-sup condition with respect to a stronger norm than coercivity suggests. A modification of the stabilization of the convection allows an optimal estimation of the consistency error. A priori estimates in the stronger norm and in the L2 norm for the pressure are established. Discontinuous pressure approximations are included in the analysis.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GC201%2F07%2FJ033" target="_blank" >GC201/07/J033: Numerical simulation of the interactions between a ferrofluid and an immersed permanent magnet</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Numerical Methods for Partial Differential Equations
ISSN
0749-159X
e-ISSN
—
Volume of the periodical
29
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
20
Pages from-to
206-225
UT code for WoS article
000311618400010
EID of the result in the Scopus database
—