All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Approximate polynomial GCD

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10133856" target="_blank" >RIV/00216208:11320/13:10133856 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Approximate polynomial GCD

  • Original language description

    The computation of polynomial greatest common divisor (GCD) ranks among basic algebraic problems with many applications. The problem of the GCD computing of two exact polynomials is well defined and can be solved symbolically, for example, by the oldestand comonly used Euclid's algorithm. However, this is an ill-posed problem, particularly, when some unknown noise is applied to the polynomial coefficients. The aim is to overcome the ill-posed sensitivity of the GCD computation in the presence of noise.It is shown that this can be successively done through a TLS formulation of the solved problem.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Programs and Algorithms of Numerical Mathematics 16, Proceedings of Seminar

  • ISBN

    978-80-85823-62-2

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    63-68

  • Publisher name

    Matematický ústav AV ČR

  • Place of publication

    Praha

  • Event location

    Dolní Maxov

  • Event date

    Jun 3, 2012

  • Type of event by nationality

    CST - Celostátní akce

  • UT code for WoS article