Approximate polynomial GCD
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10133856" target="_blank" >RIV/00216208:11320/13:10133856 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Approximate polynomial GCD
Original language description
The computation of polynomial greatest common divisor (GCD) ranks among basic algebraic problems with many applications. The problem of the GCD computing of two exact polynomials is well defined and can be solved symbolically, for example, by the oldestand comonly used Euclid's algorithm. However, this is an ill-posed problem, particularly, when some unknown noise is applied to the polynomial coefficients. The aim is to overcome the ill-posed sensitivity of the GCD computation in the presence of noise.It is shown that this can be successively done through a TLS formulation of the solved problem.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Programs and Algorithms of Numerical Mathematics 16, Proceedings of Seminar
ISBN
978-80-85823-62-2
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
63-68
Publisher name
Matematický ústav AV ČR
Place of publication
Praha
Event location
Dolní Maxov
Event date
Jun 3, 2012
Type of event by nationality
CST - Celostátní akce
UT code for WoS article
—