All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A Kuratowski-type theorem for planarity of partially embedded graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10135346" target="_blank" >RIV/00216208:11320/13:10135346 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.comgeo.2012.07.005" target="_blank" >http://dx.doi.org/10.1016/j.comgeo.2012.07.005</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.comgeo.2012.07.005" target="_blank" >10.1016/j.comgeo.2012.07.005</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A Kuratowski-type theorem for planarity of partially embedded graphs

  • Original language description

    A partially embedded graph (or PEG) is a triple (G, H, H), where G is a graph, H is a subgraph of G, and H is a planar embedding of H. We say that a PEG (G, H, H) is planar if the graph G has a planar embedding that extends the embedding H. We introducea containment relation of PEGS analogous to graph minor containment, and characterize the minimal non-planar PEGS with respect to this relation. We show that all the minimal non-planar PEGS except for finitely many belong to a single easily recognizableand explicitly described infinite family. We also describe a more complicated containment relation which only has a finite number of minimal non-planar PEGS. Furthermore, by extending an existing planarity test for PEGS, we obtain a polynomial-time algorithm which, for a given PEG, either produces a planar embedding or identifies an obstruction.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GEGIG%2F11%2FE023" target="_blank" >GEGIG/11/E023: Graph Drawings and Representations</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Computational Geometry: Theory and Applications

  • ISSN

    0925-7721

  • e-ISSN

  • Volume of the periodical

    46

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    27

  • Pages from-to

    466-492

  • UT code for WoS article

    000314437000006

  • EID of the result in the Scopus database