Rank tests for corrupted linear models
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10159141" target="_blank" >RIV/00216208:11320/13:10159141 - isvavai.cz</a>
Alternative codes found
RIV/46747885:24510/13:#0000948
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Rank tests for corrupted linear models
Original language description
For some variants of regression models, including partial, measurement error or error-in-variables, latent e(R)ects, semi-parametric and otherwise corrupted linear models, the classical parametric tests generally do not perform well. Various modifications and generalizationsconsidered extensively in the literature rests on stringent regularity assumptions which are not likely to be tenable in many applications. However, in such non-standard cases, rank based tests can be adapted better, and further, incorporation of rank analysis of covariance tools enhance their power-efficiency. Numerical studies and a real data illus- tration show the superiority of rank based inference in such corrupted linear models.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of the Indian Statistical Association
ISSN
0537-2585
e-ISSN
—
Volume of the periodical
51
Issue of the periodical within the volume
1
Country of publishing house
IN - INDIA
Number of pages
29
Pages from-to
201-230
UT code for WoS article
—
EID of the result in the Scopus database
—