A design of residual error estimates for a high order BDF-DGFE method applied to compressible flows
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10159216" target="_blank" >RIV/00216208:11320/13:10159216 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1002/fld.3811" target="_blank" >http://dx.doi.org/10.1002/fld.3811</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/fld.3811" target="_blank" >10.1002/fld.3811</a>
Alternative languages
Result language
angličtina
Original language name
A design of residual error estimates for a high order BDF-DGFE method applied to compressible flows
Original language description
We deal with the numerical solution of the non-stationary compressible Navier-Stokes equations with the aid of the backward difference formula - discontinuous Galerkin finite element method. This scheme is sufficiently stable, efficient and accurate withrespect to the space as well as time coordinates. The nonlinear algebraic systems arising from the backward difference formula - discontinuous Galerkin finite element discretization are solved by an iterative Newton-like method. The main benefit of thispaper are residual error estimates that are able to identify the computational errors following from the space and time discretizations and from the inexact solution of the nonlinear algebraic systems. Thus, we propose an efficient algorithm where the algebraic, spatial and temporal errors are balanced. The computational performance of the proposed method is demonstrated by a list of numerical experiments.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-00522S" target="_blank" >GA13-00522S: Qualitative analysis and numerical solution of problems of flows in generally time-dependent domains with various boundary conditions</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal for Numerical Methods in Fluids
ISSN
0271-2091
e-ISSN
—
Volume of the periodical
73
Issue of the periodical within the volume
6
Country of publishing house
GB - UNITED KINGDOM
Number of pages
37
Pages from-to
523-559
UT code for WoS article
000324017500002
EID of the result in the Scopus database
—