On the mutually independent Hamiltonian cycles in faulty hypercubes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10172733" target="_blank" >RIV/00216208:11320/13:10172733 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.ins.2013.02.020" target="_blank" >http://dx.doi.org/10.1016/j.ins.2013.02.020</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ins.2013.02.020" target="_blank" >10.1016/j.ins.2013.02.020</a>
Alternative languages
Result language
angličtina
Original language name
On the mutually independent Hamiltonian cycles in faulty hypercubes
Original language description
Two ordered Hamiltonian paths in the n-dimensional hypercube Q_n are said to be independent if ith vertices of the paths are distinct for every 1 {= i {= 2^n. Similarly, two s-starting Hamiltonian cycles are independent if the ith vertices of the cycle are distinct for every 2 {= i {= 2^n. A set S of Hamiltonian paths (s-starting Hamiltonian cycles) are mutually independent if every two paths (cycles, respectively) from S are independent. We show that for n pairs of adjacent vertices w_i and b_i, thereare n mutually independent Hamiltonian paths with endvertices w_i, b_i in Q_n. We also show that Q_n contains n - f fault-free mutually independent s-starting Hamiltonian cycles, for every set of f {= n - 2 faulty edges in Q_n and every vertex s. This improves previously known results on the numbers of mutually independent Hamiltonian paths and cycles in the hypercube with faulty edges.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Information Sciences
ISSN
0020-0255
e-ISSN
—
Volume of the periodical
236
Issue of the periodical within the volume
1. červenec 2013
Country of publishing house
US - UNITED STATES
Number of pages
12
Pages from-to
224-235
UT code for WoS article
000318747800017
EID of the result in the Scopus database
—