DyBaNeM: Bayesian Episodic Memory Framework for Intelligent Virtual Agents
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10172793" target="_blank" >RIV/00216208:11320/13:10172793 - isvavai.cz</a>
Result on the web
<a href="http://artemis.ms.mff.cuni.cz/main/papers/DyBaNeM-IVA2013.pdf" target="_blank" >http://artemis.ms.mff.cuni.cz/main/papers/DyBaNeM-IVA2013.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-40415-3_2" target="_blank" >10.1007/978-3-642-40415-3_2</a>
Alternative languages
Result language
angličtina
Original language name
DyBaNeM: Bayesian Episodic Memory Framework for Intelligent Virtual Agents
Original language description
Episodic Memory (EM) abilities are important for many types of intelligent virtual agents (IVAs). However, the few IVA EM systems implemented to date utilize indexed logs of events as the underlying memory representation, which makes it hard to model some crucial facets of human memory, including hierarchical organization of episodes, reconstructive memory retrieval, and encoding of episodes with respect to previously learnt schemata. Here, we present a new general framework for EM modeling, DyBaNeM, which capitalizes on bayesian representation and, consequently, enables modeling these (and other) features easily. By means of a proof-of-concept implementation, we demonstrate that our approach to EM modeling is promising, at least for domains of moderate complexity.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP103%2F10%2F1287" target="_blank" >GAP103/10/1287: PlanEx: Bridging Planning and Execution</a><br>
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lecture Notes in Computer Science
ISBN
978-3-642-40414-6
ISSN
0302-9743
e-ISSN
—
Number of pages
14
Pages from-to
15-28
Publisher name
Springer
Place of publication
Berlin
Event location
Edinburgh, UK
Event date
Aug 29, 2013
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—