Delamination and adhesive contact models and their mathematical analysis and numerical treatment
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10172800" target="_blank" >RIV/00216208:11320/13:10172800 - isvavai.cz</a>
Alternative codes found
RIV/67985556:_____/13:00422758 RIV/67985556:_____/13:00423055 RIV/61388998:_____/13:00422758 RIV/68407700:21110/14:00222555
Result on the web
<a href="http://ncmm.karlin.mff.cuni.cz/preprints/11279201218trsevilla-revised-preprint.pdf" target="_blank" >http://ncmm.karlin.mff.cuni.cz/preprints/11279201218trsevilla-revised-preprint.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/9781848167858_0009" target="_blank" >10.1142/9781848167858_0009</a>
Alternative languages
Result language
angličtina
Original language name
Delamination and adhesive contact models and their mathematical analysis and numerical treatment
Original language description
This chapter reviews mathematical approaches to inelastic processes on surfaces of elastic bodies. We mostly consider a quasistatic and rate-independent evolution at small strains and the concept of the so-called energetic solution. This concept is applied e.g.~to brittle/elastic delamination, cohesive contact problems, and to delamination in various modes. Beside the theoretical treatment, numerical experiments are also presented. Finally, generalizations to dynamical and thermodynamical processes areoutlined, together with extension to homogenization of composite materials with debonding phases.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Mathematical Methods and Models in Composites
ISBN
978-1-84816-784-1
Number of pages of the result
52
Pages from-to
349-400
Number of pages of the book
520
Publisher name
Imperial College Press
Place of publication
London
UT code for WoS chapter
—