Depth-Based Classification for Distributions with Nonconvex Support
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10173473" target="_blank" >RIV/00216208:11320/13:10173473 - isvavai.cz</a>
Alternative codes found
RIV/61989592:15310/13:33157689
Result on the web
<a href="http://www.hindawi.com/journals/jps/2013/629184/" target="_blank" >http://www.hindawi.com/journals/jps/2013/629184/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1155/2013/629184" target="_blank" >10.1155/2013/629184</a>
Alternative languages
Result language
angličtina
Original language name
Depth-Based Classification for Distributions with Nonconvex Support
Original language description
Halfspace depth became a popular nonparametric tool for statistical analysis of multivariate data during the last two decades. One of applications of data depth considered recently in literature is the classification problem. The data depth approach is used instead of the linear discriminant analysis mostly to avoid the parametric assumptions and to get better classifier for data whose distribution is not elliptically symmetric, for example, skewed data. In our paper, we suggest to use weighted versionof halfspace depth rather than the halfspace depth itself in order to obtain lower misclassification rate in the case of "nonconvex" distributions. Simulations show that the results of depth-based classifiers are comparable with linear discriminant analysis for two normal populations, while for nonelliptic distributions the classifier based on weighted halfspace depth outperforms both linear discriminant analysis and classifier based on the usual (nonweighted) halfspace depth.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/EE2.3.20.0170" target="_blank" >EE2.3.20.0170: Building of Research Team in the Field of Environmental Modeling and the Use of Geoinformation Systems with the Consequence in Participation in International Networks and Programs</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Probability and Statistics
ISSN
1687-952X
e-ISSN
—
Volume of the periodical
2013
Issue of the periodical within the volume
September
Country of publishing house
EG - EGYPT
Number of pages
7
Pages from-to
1-7
UT code for WoS article
—
EID of the result in the Scopus database
—