Monolithic Newton-multigrid solution techniques for incompressible nonlinear flow models
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10173704" target="_blank" >RIV/00216208:11320/13:10173704 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1002/fld.3656" target="_blank" >http://dx.doi.org/10.1002/fld.3656</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/fld.3656" target="_blank" >10.1002/fld.3656</a>
Alternative languages
Result language
angličtina
Original language name
Monolithic Newton-multigrid solution techniques for incompressible nonlinear flow models
Original language description
We present special Newton-multigrid techniques for stationary incompressible nonlinear flow models discretized by the high order LBB-stable Q2P1 element pair. We treat the resulting nonlinear and the corresponding linear discrete systems by a fully coupled monolithic approach to maintain high accuracy and robustness, particularly with respect to different rheological behaviors and also regarding different problem sizes and types of nonlinearity. Here, local pressure Schur complement techniques are presented as a generalization of the classical Vanka smoother. The discussed methodology is implemented for the well-known flow around cylinder benchmark configuration for generalized Newtonian as well as non-Newtonian flows including non-isothermal, shear/pressure dependent and viscoelastic effects.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LC06052" target="_blank" >LC06052: The Nečas Center for Mathematical Modeling</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal for Numerical Methods in Fluids
ISSN
0271-2091
e-ISSN
—
Volume of the periodical
71
Issue of the periodical within the volume
2
Country of publishing house
GB - UNITED KINGDOM
Number of pages
15
Pages from-to
208-222
UT code for WoS article
000312539700005
EID of the result in the Scopus database
—