On the steady equations for compressible radiative gas
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10173710" target="_blank" >RIV/00216208:11320/13:10173710 - isvavai.cz</a>
Alternative codes found
RIV/67985840:_____/13:00393486
Result on the web
<a href="http://dx.doi.org/10.1007/s00033-012-0246-4" target="_blank" >http://dx.doi.org/10.1007/s00033-012-0246-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00033-012-0246-4" target="_blank" >10.1007/s00033-012-0246-4</a>
Alternative languages
Result language
angličtina
Original language name
On the steady equations for compressible radiative gas
Original language description
We study the equations describing the steady flow of a compressible radiative gas with newtonian rheology. Under suitable assumptions on the data that include the physically relevant situations (i.e., the pressure law for monoatomic gas, the heat conductivity growing with square root of the temperature), we show the existence of a variational entropy solution to the corresponding system of partial differential equations. Under additional restrictions, we also show the existence of a weak solution to this problem.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Zeitschrift für Angewandte Mathematik und Physik
ISSN
0044-2275
e-ISSN
—
Volume of the periodical
64
Issue of the periodical within the volume
3
Country of publishing house
CH - SWITZERLAND
Number of pages
33
Pages from-to
539-571
UT code for WoS article
000319356100009
EID of the result in the Scopus database
—