Image Classification with Growing Neural Networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10173971" target="_blank" >RIV/00216208:11320/13:10173971 - isvavai.cz</a>
Result on the web
<a href="http://www.ijcte.org/papers/722-W00090.pdf" target="_blank" >http://www.ijcte.org/papers/722-W00090.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7763/IJCTE.2013.V5.722" target="_blank" >10.7763/IJCTE.2013.V5.722</a>
Alternative languages
Result language
angličtina
Original language name
Image Classification with Growing Neural Networks
Original language description
Future multi-media technologies are expected to support on-line processing of huge amounts of high-dimensional data without any special pre-processing. Growing Neural Networks designed for efficient image processing also involve data-dependent adjustmentof both the number and position of the neurons that improves generalization. In this way, local features detected automatically by Growing Neural Networks impact a transparent and compact representation of the extracted knowledge. The performed case studies refer to face and hand-written digit recognition.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BD - Information theory
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Computer Theory and Engineering
ISSN
1793-8201
e-ISSN
—
Volume of the periodical
5
Issue of the periodical within the volume
3
Country of publishing house
SG - SINGAPORE
Number of pages
6
Pages from-to
422-427
UT code for WoS article
—
EID of the result in the Scopus database
—