On the Reduction of the CSP Dichotomy Conjecture to Digraphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10188781" target="_blank" >RIV/00216208:11320/13:10188781 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-642-40627-0" target="_blank" >http://dx.doi.org/10.1007/978-3-642-40627-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-40627-0" target="_blank" >10.1007/978-3-642-40627-0</a>
Alternative languages
Result language
angličtina
Original language name
On the Reduction of the CSP Dichotomy Conjecture to Digraphs
Original language description
It is well known that the constraint satisfaction problem over general relational structures can be reduced in polynomial time to digraphs. We present a simple variant of such a reduction and use it to show that the algebraic dichotomy conjecture is equivalent to its restriction to digraphs and that the polynomial reduction can be made in logspace. We also show that our reduction preserves the bounded width property, i.e., solvability by local consistency methods. We discuss further algorithmic properties that are preserved and related open problems.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Principles and Practice of Constraint Programming
ISBN
978-3-642-40626-3
ISSN
0302-9743
e-ISSN
—
Number of pages
16
Pages from-to
184-199
Publisher name
Springer
Place of publication
Berlin Heidelberg
Event location
Uppsala, Sweden
Event date
Sep 16, 2013
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—