All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the Reduction of the CSP Dichotomy Conjecture to Digraphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10188781" target="_blank" >RIV/00216208:11320/13:10188781 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-642-40627-0" target="_blank" >http://dx.doi.org/10.1007/978-3-642-40627-0</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-642-40627-0" target="_blank" >10.1007/978-3-642-40627-0</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the Reduction of the CSP Dichotomy Conjecture to Digraphs

  • Original language description

    It is well known that the constraint satisfaction problem over general relational structures can be reduced in polynomial time to digraphs. We present a simple variant of such a reduction and use it to show that the algebraic dichotomy conjecture is equivalent to its restriction to digraphs and that the polynomial reduction can be made in logspace. We also show that our reduction preserves the bounded width property, i.e., solvability by local consistency methods. We discuss further algorithmic properties that are preserved and related open problems.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Principles and Practice of Constraint Programming

  • ISBN

    978-3-642-40626-3

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    16

  • Pages from-to

    184-199

  • Publisher name

    Springer

  • Place of publication

    Berlin Heidelberg

  • Event location

    Uppsala, Sweden

  • Event date

    Sep 16, 2013

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article