The Clifford Deformation of the Hermite Semigroup
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10191638" target="_blank" >RIV/00216208:11320/13:10191638 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.3842/SIGMA.2013.010" target="_blank" >http://dx.doi.org/10.3842/SIGMA.2013.010</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3842/SIGMA.2013.010" target="_blank" >10.3842/SIGMA.2013.010</a>
Alternative languages
Result language
angličtina
Original language name
The Clifford Deformation of the Hermite Semigroup
Original language description
This paper is a continuation of the paper [H. De~Bie et al., Dunkl operators and a family of realizations of $mathfrak{osp}(1|2)$, arXiv:0911.4725], investigating a natural radial deformation of the Fourier transform in the setting of Clifford analysis.At the same time, it gives extensions of many results obtained in [S. Ben Said et al., Laguerre semigroup and Dunkl operators, arXiv:0907.3749]. We establish the analogues of Bochner's formula and the Heisenberg uncertainty relation in the framework ofthe (holomorphic) Hermite semigroup, and also give a detailed analytic treatment of the series expansion of the associated integral transform.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Symmetry, Integrability and Geometry - Methods and Applications
ISSN
1815-0659
e-ISSN
—
Volume of the periodical
2013
Issue of the periodical within the volume
9
Country of publishing house
UA - UKRAINE
Number of pages
22
Pages from-to
1-22
UT code for WoS article
—
EID of the result in the Scopus database
—