Non-absolutely convergent integrals in metric spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10192138" target="_blank" >RIV/00216208:11320/13:10192138 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jmaa.2012.12.044" target="_blank" >http://dx.doi.org/10.1016/j.jmaa.2012.12.044</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2012.12.044" target="_blank" >10.1016/j.jmaa.2012.12.044</a>
Alternative languages
Result language
angličtina
Original language name
Non-absolutely convergent integrals in metric spaces
Original language description
We develop the theory of Henstock-Kurzweil type integral of functions with respect to metric distributions in the framework of metric spaces. In the setting of metric currents (as originated by E. De Giorgi, L. Ambrosio and B. Kirchheim) we apply the newintegral to study a generalization of the Stokes theorem.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F12%2F0436" target="_blank" >GAP201/12/0436: Theory of Real Functions and Descriptive Set Theory III</a><br>
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
—
Volume of the periodical
401
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
23
Pages from-to
578-600
UT code for WoS article
000315425900012
EID of the result in the Scopus database
—