All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Evolutionary Optimization of Meta Data Metric for Method Recommendation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10286095" target="_blank" >RIV/00216208:11320/13:10286095 - isvavai.cz</a>

  • Alternative codes found

    RIV/67985807:_____/13:00425750

  • Result on the web

    <a href="http://dx.doi.org/10.1109/ICCIS.2013.6751590" target="_blank" >http://dx.doi.org/10.1109/ICCIS.2013.6751590</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICCIS.2013.6751590" target="_blank" >10.1109/ICCIS.2013.6751590</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Evolutionary Optimization of Meta Data Metric for Method Recommendation

  • Original language description

    Metalearning - a method for recommendation the most suitable data-mining algorithm to an unknown dataset - is an important problem that needs to be solved in order to design a completely autonomous data-mining solver. This paper deals with this particular problem by proposing a machinelearning method which recommends the most suitable algorithm to an unknown dataset based on the results of previous data-mining experiments. The fundamental idea behind this is that the algorithms will perform similarly onsimilar datasets. The choice of datasets features - called meta data - is presented and the metric comparing datasets is optimized by means of evolutionary computation.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GAP202%2F11%2F1368" target="_blank" >GAP202/11/1368: Learning of functional relationships from high-dimensional data</a><br>

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 2013 IEEE Conference on Cybernetics and Intelligent Systems, (CIS)

  • ISBN

    978-1-4799-1072-4

  • ISSN

    2326-8123

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    123-127

  • Publisher name

    IEEE Computer Society

  • Place of publication

    Manilla

  • Event location

    Manila; Philippines

  • Event date

    Nov 12, 2013

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article