Strong solvability of linear interval systems of inequalities with simple dependencies
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10282490" target="_blank" >RIV/00216208:11320/14:10282490 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1504/IJFCM.2014.064239" target="_blank" >http://dx.doi.org/10.1504/IJFCM.2014.064239</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1504/IJFCM.2014.064239" target="_blank" >10.1504/IJFCM.2014.064239</a>
Alternative languages
Result language
angličtina
Original language name
Strong solvability of linear interval systems of inequalities with simple dependencies
Original language description
This paper is concerned with strong solvability of linear interval inequalities. In traditional interval analysis, we suppose that values from different intervals are mutually independent. But this assumption can be sometimes too restrictive. We derive extensions of classical results for the case when there is a simple dependence structure between coefficients of an interval system. The dependency is given by equality of two sub-matrices of the constraint matrix. We apply the approach to strong solvability of complex interval linear systems of inequalities.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-10660S" target="_blank" >GA13-10660S: Interval methods for optimization problems</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Fuzzy Computation and Modelling
ISSN
2052-3548
e-ISSN
—
Volume of the periodical
1
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
12
Pages from-to
3-14
UT code for WoS article
—
EID of the result in the Scopus database
—