All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Embeddability in the 3-sphere is decidable

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10282816" target="_blank" >RIV/00216208:11320/14:10282816 - isvavai.cz</a>

  • Result on the web

    <a href="http://dl.acm.org/citation.cfm?id=2582137" target="_blank" >http://dl.acm.org/citation.cfm?id=2582137</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/2582112.2582137" target="_blank" >10.1145/2582112.2582137</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Embeddability in the 3-sphere is decidable

  • Original language description

    We show that the following algorithmic problem is decidable: given a 2-dimensional simplicial complex, can it be embedded (topologically, or equivalently, piecewise linearly) in R3? By a known reduction, it suffices to decide the embeddability of a giventriangulated 3-manifold X into the 3-sphere S3. The main step, which allows us to simplify X and recurse, is in proving that if X can be embedded in S3, then there is also an embedding in which X has a short meridian, i.e., an essential curve in the boundary of X bounding a disk in S3 X with length bounded by a computable function of the number of tetrahedra of X.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GEGIG%2F11%2FE023" target="_blank" >GEGIG/11/E023: Graph Drawings and Representations</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the thirtieth annual symposium on Computational geometry

  • ISBN

    978-1-4503-2594-3

  • ISSN

  • e-ISSN

  • Number of pages

    7

  • Pages from-to

    78-84

  • Publisher name

    ACM

  • Place of publication

    New York

  • Event location

    Kyoto

  • Event date

    Jun 8, 2014

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article