Embeddability in the 3-sphere is decidable
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10282816" target="_blank" >RIV/00216208:11320/14:10282816 - isvavai.cz</a>
Result on the web
<a href="http://dl.acm.org/citation.cfm?id=2582137" target="_blank" >http://dl.acm.org/citation.cfm?id=2582137</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/2582112.2582137" target="_blank" >10.1145/2582112.2582137</a>
Alternative languages
Result language
angličtina
Original language name
Embeddability in the 3-sphere is decidable
Original language description
We show that the following algorithmic problem is decidable: given a 2-dimensional simplicial complex, can it be embedded (topologically, or equivalently, piecewise linearly) in R3? By a known reduction, it suffices to decide the embeddability of a giventriangulated 3-manifold X into the 3-sphere S3. The main step, which allows us to simplify X and recurse, is in proving that if X can be embedded in S3, then there is also an embedding in which X has a short meridian, i.e., an essential curve in the boundary of X bounding a disk in S3 X with length bounded by a computable function of the number of tetrahedra of X.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GEGIG%2F11%2FE023" target="_blank" >GEGIG/11/E023: Graph Drawings and Representations</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the thirtieth annual symposium on Computational geometry
ISBN
978-1-4503-2594-3
ISSN
—
e-ISSN
—
Number of pages
7
Pages from-to
78-84
Publisher name
ACM
Place of publication
New York
Event location
Kyoto
Event date
Jun 8, 2014
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—