A posteriori upper and lower error bound of the high-order discontinuous Galerkin method for the heat conduction equation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10283096" target="_blank" >RIV/00216208:11320/14:10283096 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s10492-014-0045-7" target="_blank" >http://dx.doi.org/10.1007/s10492-014-0045-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10492-014-0045-7" target="_blank" >10.1007/s10492-014-0045-7</a>
Alternative languages
Result language
angličtina
Original language name
A posteriori upper and lower error bound of the high-order discontinuous Galerkin method for the heat conduction equation
Original language description
We deal with the numerical solution of the nonstationary heat conduction equation with mixed Dirichlet/Neumann boundary conditions. The backward Euler method is employed for the time discretization and the interior penalty discontinuous Galerkin method for the space discretization. Assuming shape regularity, local quasi-uniformity, and transition conditions, we derive both a posteriori upper and lower error bounds. The analysis is based on the Helmholtz decomposition, the averaging interpolation operator, and on the use of cut-off functions. Numerical experiments are presented.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applications of Mathematics
ISSN
0862-7940
e-ISSN
—
Volume of the periodical
59
Issue of the periodical within the volume
2
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
24
Pages from-to
121-144
UT code for WoS article
000334058000001
EID of the result in the Scopus database
—