Numerical solution of fluid-structure interaction by the space-time discontinuous Galerkin method
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10283161" target="_blank" >RIV/00216208:11320/14:10283161 - isvavai.cz</a>
Alternative codes found
RIV/61388998:_____/14:00436577
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-05591-6_56" target="_blank" >http://dx.doi.org/10.1007/978-3-319-05591-6_56</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-05591-6_56" target="_blank" >10.1007/978-3-319-05591-6_56</a>
Alternative languages
Result language
angličtina
Original language name
Numerical solution of fluid-structure interaction by the space-time discontinuous Galerkin method
Original language description
This paper is devoted to the numerical solution of the interaction of compressible viscous flow with elastic structures. The flow in a time-dependent domain is described by the compressible Navier-Stokes equations written in the ALE formulation and the deformation of elastic structures is described by the dynamic linear elasticity system. For each individual problem we employ the discretization by the space-time discontinuous Galerkin finite element method (ST-DGM). The flow and elasticity problems arecoupled via transmission conditions. The developed method is tested by numerical experiments.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Finite Volumes for Complex Applications VII - Elliptic, Parabolic and Hyperbolic Problems
ISBN
978-3-319-05590-9
ISSN
—
e-ISSN
—
Number of pages
10
Pages from-to
567-575
Publisher name
Springer
Place of publication
Cham
Event location
Berlin
Event date
Jun 16, 2014
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—