All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the Use of Particle Markov Chain Monte Carlo in Parameter Estimation of Space-Time Interacting Discs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10283166" target="_blank" >RIV/00216208:11320/14:10283166 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21230/14:00222638 RIV/60461373:22340/14:43897646

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s11009-013-9367-2" target="_blank" >http://dx.doi.org/10.1007/s11009-013-9367-2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11009-013-9367-2" target="_blank" >10.1007/s11009-013-9367-2</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the Use of Particle Markov Chain Monte Carlo in Parameter Estimation of Space-Time Interacting Discs

  • Original language description

    A space-time random set is defined and methods of its parameters estimation are investigated. The evolution in discrete time is described by a state-space model. The observed output is a planar union of interacting discs given by a probability density with respect to a reference Poisson process of discs. The state vector is to be estimated together with auxiliary parameters of transitions caused by a random walk. Three methods of parameters estimation are involved, first of which is the maximum likelihood estimation (MLE) for individual outputs at fixed times. In the space-time model the state vector can be estimated by the particle filter (PF), where MLE serves to the estimation of auxiliary parameters. In the present paper the aim is to compare MLE and PF with particle Markov chain Monte Carlo (PMCMC). From the group of PMCMC methods we use specially the particle marginal Metropolis-Hastings (PMMH) algorithm which updates simultaneously the state vector and the auxiliary parameters.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GAP201%2F10%2F0472" target="_blank" >GAP201/10/0472: Stochastic geometry - inhomogeneity, marking, dynamics and stereology</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Methodology and Computing in Applied Probability

  • ISSN

    1387-5841

  • e-ISSN

  • Volume of the periodical

    16

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    13

  • Pages from-to

    451-463

  • UT code for WoS article

    000335508800013

  • EID of the result in the Scopus database