Remarks on Fréchet differentiability of pointwise Lipschitz, cone-monotone and quasiconvex functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10285330" target="_blank" >RIV/00216208:11320/14:10285330 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Remarks on Fréchet differentiability of pointwise Lipschitz, cone-monotone and quasiconvex functions
Original language description
Some new generalizations of a deep result of J. Lindenstrauss and D. Preiss on Gamma-almost everywhere Fréchet differentiability of Lipschitz functions on c_0 (and similar Banach spaces) are proved.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F12%2F0436" target="_blank" >GAP201/12/0436: Theory of Real Functions and Descriptive Set Theory III</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Commentationes Mathematicae Universitatis Carolinae
ISSN
0010-2628
e-ISSN
—
Volume of the periodical
55
Issue of the periodical within the volume
2
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
11
Pages from-to
203-213
UT code for WoS article
—
EID of the result in the Scopus database
—