All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A neural network clustering algorithm for the ATLAS silicon pixel detector

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10286977" target="_blank" >RIV/00216208:11320/14:10286977 - isvavai.cz</a>

  • Alternative codes found

    RIV/68378271:_____/14:00435222 RIV/68407700:21220/14:00226987 RIV/68407700:21340/14:00226987 RIV/68407700:21670/14:00226987 RIV/61989592:15310/14:33152022

  • Result on the web

    <a href="http://dx.doi.org/10.1088/1748-0221/9/09/P09009" target="_blank" >http://dx.doi.org/10.1088/1748-0221/9/09/P09009</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1748-0221/9/09/P09009" target="_blank" >10.1088/1748-0221/9/09/P09009</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A neural network clustering algorithm for the ATLAS silicon pixel detector

  • Original language description

    A novel technique to identify and split clusters created by multiple charged particles in the ATLAS pixel detector using a set of artificial neural networks is presented. Such merged clusters are a common feature of tracks originating from highly energetic objects, such as jets. Neural networks are trained using Monte Carlo samples produced with a detailed detector simulation. This technique replaces the former clustering approach based on a connected component analysis and charge interpolation. The performance of the neural network splitting technique is quantified using data from proton-proton collisions at the LHC collected by the ATLAS detector in 2011 and from Monte Carlo simulations. This technique reduces the number of clusters shared between tracks in highly energetic jets by up to a factor of three. It also provides more precise position and error estimates of the clusters in both the transverse and longitudinal impact parameter resolution.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BF - Elementary particle theory and high energy physics

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Instrumentation

  • ISSN

    1748-0221

  • e-ISSN

  • Volume of the periodical

    9

  • Issue of the periodical within the volume

    15.zari

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    35

  • Pages from-to

  • UT code for WoS article

    000343281300046

  • EID of the result in the Scopus database