CYCLIC EXTENSIONS OF MOUFANG LOOPS INDUCED BY SEMI-AUTOMORPHISMS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10287259" target="_blank" >RIV/00216208:11320/14:10287259 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1142/S0219498813501284" target="_blank" >http://dx.doi.org/10.1142/S0219498813501284</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0219498813501284" target="_blank" >10.1142/S0219498813501284</a>
Alternative languages
Result language
angličtina
Original language name
CYCLIC EXTENSIONS OF MOUFANG LOOPS INDUCED BY SEMI-AUTOMORPHISMS
Original language description
It is well-known that if a group G factorizes as G = NH where H {= G and N (sic) G then the group structure of G is determined by the subgroups H and N, the intersection N boolean AND H and how H acts on N with a homomorphism phi : H -> Aut(N). Here, wegeneralize the idea by creating extensions using the semi-automorphism group of N. We show that if G = NH is a Moufang loop, N is a normal subloop, and H = < u > is a finite cyclic group of order coprime to three then the binary operation of G depends only on the binary operation of N, the intersection N boolean AND H, and how u permutes the elements of N as a semi-automorphism of N.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Algebra and its Applications
ISSN
0219-4988
e-ISSN
—
Volume of the periodical
13
Issue of the periodical within the volume
4
Country of publishing house
SG - SINGAPORE
Number of pages
7
Pages from-to
—
UT code for WoS article
000329514700008
EID of the result in the Scopus database
—