Distances of group tables and latin squares via equilateral triangle dissections
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10287280" target="_blank" >RIV/00216208:11320/14:10287280 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jcta.2013.10.005" target="_blank" >http://dx.doi.org/10.1016/j.jcta.2013.10.005</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jcta.2013.10.005" target="_blank" >10.1016/j.jcta.2013.10.005</a>
Alternative languages
Result language
angličtina
Original language name
Distances of group tables and latin squares via equilateral triangle dissections
Original language description
Denote by gdist(p) the least non-zero number of cells that have to be changed to get a latin square from the table of addition modulo p. A conjecture of Drapal, Cavenagh and Wanless states that there exists c > 0 such that gdist(p) clog(p). In this paperthe conjecture is proved for c approximate to 7.21, and as an intermediate result. it is shown that an equilateral triangle of side n can be non-trivially dissected into at most 5 log(2)(n) integer-sided equilateral triangles. The paper also presents some evidence which suggests that gdist(p)/log(p) approximate to 3.56 for large values of p. (C) 2013 Elsevier Inc. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Combinatorial Theory - Series A
ISSN
0097-3165
e-ISSN
—
Volume of the periodical
123
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
7
Pages from-to
1-7
UT code for WoS article
000330749100001
EID of the result in the Scopus database
—