Exploiting the Implicit Support Function for a Topologically Accurate Approximation of Algebraic Curves
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10289164" target="_blank" >RIV/00216208:11320/14:10289164 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-642-54382-1_4" target="_blank" >http://dx.doi.org/10.1007/978-3-642-54382-1_4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-54382-1_4" target="_blank" >10.1007/978-3-642-54382-1_4</a>
Alternative languages
Result language
angličtina
Original language name
Exploiting the Implicit Support Function for a Topologically Accurate Approximation of Algebraic Curves
Original language description
Describing the topology of real algebraic curves is a classical problem in computational algebraic geometry. It is usually based on algebraic techniques applied directly to the curve equation. We use the implicit support function representation for thispurpose which can in certain cases considerably simplify this task. We describe possible strategies and demonstrate them on a simple example. We also exploit the implicit support function for a features-preserving approximation of the graph topologicallyequivalent to the curve. This contribution is meant as a first step towards an algorithm combining classical approaches with the dual description via the support function.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Mathematical Methods for Curves and Surfaces
ISBN
978-3-642-54381-4
ISSN
—
e-ISSN
—
Number of pages
19
Pages from-to
49-67
Publisher name
Springer
Place of publication
Berlin Heidelberg
Event location
Oslo
Event date
Jun 28, 2012
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—