All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Exploiting the Implicit Support Function for a Topologically Accurate Approximation of Algebraic Curves

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10289164" target="_blank" >RIV/00216208:11320/14:10289164 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-642-54382-1_4" target="_blank" >http://dx.doi.org/10.1007/978-3-642-54382-1_4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-642-54382-1_4" target="_blank" >10.1007/978-3-642-54382-1_4</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Exploiting the Implicit Support Function for a Topologically Accurate Approximation of Algebraic Curves

  • Original language description

    Describing the topology of real algebraic curves is a classical problem in computational algebraic geometry. It is usually based on algebraic techniques applied directly to the curve equation. We use the implicit support function representation for thispurpose which can in certain cases considerably simplify this task. We describe possible strategies and demonstrate them on a simple example. We also exploit the implicit support function for a features-preserving approximation of the graph topologicallyequivalent to the curve. This contribution is meant as a first step towards an algorithm combining classical approaches with the dual description via the support function.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Mathematical Methods for Curves and Surfaces

  • ISBN

    978-3-642-54381-4

  • ISSN

  • e-ISSN

  • Number of pages

    19

  • Pages from-to

    49-67

  • Publisher name

    Springer

  • Place of publication

    Berlin Heidelberg

  • Event location

    Oslo

  • Event date

    Jun 28, 2012

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article