On the Parameterization of Rational Ringed Surfaces and Rational Canal Surfaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10289179" target="_blank" >RIV/00216208:11320/14:10289179 - isvavai.cz</a>
Alternative codes found
RIV/49777513:23520/14:43922212
Result on the web
<a href="http://dx.doi.org/10.1007/s11786-014-0192-y" target="_blank" >http://dx.doi.org/10.1007/s11786-014-0192-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11786-014-0192-y" target="_blank" >10.1007/s11786-014-0192-y</a>
Alternative languages
Result language
angličtina
Original language name
On the Parameterization of Rational Ringed Surfaces and Rational Canal Surfaces
Original language description
Ringed surfaces and canal surfaces are surfaces that contain a one-parameter family of circles. Ringed surfaces can be described by a radius function, a directrix curve and vector field along the directrix curve, which specifies the normals of the planesthat contain the circles. In particular, the class of ringed surfaces includes canal surfaces, which can be obtained as the envelopes of a one-parameter family of spheres. Consequently, canal surfaces can be described by a spine curve and a radius function. We present parameterization algorithms for rational ringed surfaces and rational canal surfaces. It is shown that these algorithms may generate any rational parameterization of a ringed (or canal) surface with the property that one family of parameter lines consists of circles. These algorithms are used to obtain rational parameterizations for Darboux cyclides and to construct blends between pairs of canal surfaces and pairs of ringed surfaces.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/ED1.1.00%2F02.0090" target="_blank" >ED1.1.00/02.0090: NTIS - New Technologies for Information Society</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics in Computer Science
ISSN
1661-8270
e-ISSN
—
Volume of the periodical
8
Issue of the periodical within the volume
2
Country of publishing house
CH - SWITZERLAND
Number of pages
21
Pages from-to
299-319
UT code for WoS article
—
EID of the result in the Scopus database
—