Adaptation of machine translation for multilingual information retrieval in medical domain
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10289237" target="_blank" >RIV/00216208:11320/14:10289237 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.artmed.2014.01.004" target="_blank" >http://dx.doi.org/10.1016/j.artmed.2014.01.004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.artmed.2014.01.004" target="_blank" >10.1016/j.artmed.2014.01.004</a>
Alternative languages
Result language
angličtina
Original language name
Adaptation of machine translation for multilingual information retrieval in medical domain
Original language description
In this work, we investigate machine translation (MT) of search queries in the context of cross-lingual information retrieval (IR) in the domain of medicine. The main focus is on MT adaptation techniques to increase translation quality, however we also explore MT adaptation to improve cross-lingual IR directly. The experiments described herein have been performed and thoroughly evaluated for MT quality on the datasets created within the Khresmoi project and for IR performance on the CLEF eHealth 2013 datasets on three language pairs: Czech-English, German-English, and French-English. The search query translation results achieved in our experiments are outstanding - our systems outperformed not only our strong baselines, but also the Google Translate and Microsoft Bing Translator in direct comparison carried out on all the language pairs. In terms of the retrieval performance on this particular test collection, a significant improvement over the baseline has been achieved only for Frenc
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
AI - Linguistics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Center for Large Scale Multi-modal Data Interpretation</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Artificial Intelligence in Medicine
ISSN
0933-3657
e-ISSN
—
Volume of the periodical
61
Issue of the periodical within the volume
3
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
21
Pages from-to
165-185
UT code for WoS article
—
EID of the result in the Scopus database
—