Sufficient Stochastic Maximum Principle for Discounted Control Problem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10289700" target="_blank" >RIV/00216208:11320/14:10289700 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21340/14:00209295
Result on the web
<a href="http://dx.doi.org/10.1007/s00245-014-9241-9" target="_blank" >http://dx.doi.org/10.1007/s00245-014-9241-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00245-014-9241-9" target="_blank" >10.1007/s00245-014-9241-9</a>
Alternative languages
Result language
angličtina
Original language name
Sufficient Stochastic Maximum Principle for Discounted Control Problem
Original language description
In this article, the sufficient Pontryagin's maximum principle for infinite horizon discounted stochastic control problem is established. The sufficiency is ensured by an additional assumption of concavity of the Hamiltonian function. Throughout the paper, it is assumed that the control domain is a convex bounded set and the control may enter the diffusion term of the state equation. The general results are applied to the controlled stochastic logistic equation of population dynamics.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F10%2F0752" target="_blank" >GAP201/10/0752: Stochastic Space-Time Systems</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Mathematics and Optimization
ISSN
0095-4616
e-ISSN
—
Volume of the periodical
70
Issue of the periodical within the volume
2
Country of publishing house
DE - GERMANY
Number of pages
28
Pages from-to
225-252
UT code for WoS article
000341781800002
EID of the result in the Scopus database
—