Composition operators on W (1) X are necessarily induced by quasiconformal mappings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10291716" target="_blank" >RIV/00216208:11320/14:10291716 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.2478/s11533-013-0392-8" target="_blank" >http://dx.doi.org/10.2478/s11533-013-0392-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2478/s11533-013-0392-8" target="_blank" >10.2478/s11533-013-0392-8</a>
Alternative languages
Result language
angličtina
Original language name
Composition operators on W (1) X are necessarily induced by quasiconformal mappings
Original language description
Let Omega aS, a"e (n) be an open set and X(Omega) be any rearrangement invariant function space close to L (q) (Omega), i.e. X has the q-scaling property. We prove that each homeomorphism f which induces the composition operator u a dagger broken vertical bar u a"' f from W (1) X to W (1) X is necessarily a q-quasiconformal mapping. We also give some new results for the sufficiency of this condition for the composition operator.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LL1203" target="_blank" >LL1203: Properties of functions and mappings in Sobolev spaces</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Central European Journal of Mathematics
ISSN
1895-1074
e-ISSN
—
Volume of the periodical
12
Issue of the periodical within the volume
8
Country of publishing house
PL - POLAND
Number of pages
10
Pages from-to
1229-1238
UT code for WoS article
000335723600006
EID of the result in the Scopus database
—