Graphs critically embedded on Riemann surfaces and Ihara-Selberg zeta functions: genus one case
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10289597" target="_blank" >RIV/00216208:11320/15:10289597 - isvavai.cz</a>
Result on the web
<a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i1p10/pdf" target="_blank" >http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i1p10/pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Graphs critically embedded on Riemann surfaces and Ihara-Selberg zeta functions: genus one case
Original language description
The aim of the paper is to formulate a discrete analogue of the claim made by Alvarez-Gaume et al., (cite{a}), realizing the partition function of the free fermion on a closed Riemann surface of genus $g$ as a linear combination of $2^{2g}$ Pfaffians ofDirac operators. Let $G=(V,E)$ be a finite graph embedded in a closed Riemann surface $X$ of genus $g$, $x_e$ the collection of independent variables associated with each edge $e$ of $G$ (collected in one vector variable $x$) and $S$ the set of all $2^{2g}$ Spin-structures on $X$. We introduce $2^{2g}$ rotations $rot_s$ and $(2|E|times 2|E|)$ matrices $D(s)(x)$, $sin S$, of the transitions between the oriented edges of $G$ determined by rotations $rot_s$. We show that the generating function for the even subsets of edges of $G$, i.e., the Ising partition function, is a linear combination of the square roots of $2^{2g}$ Ihara-Selberg functions $I(D(s)(x))$ also called Feynman functions. By a result of Foata--Zeilberger holds $I(D
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electronic Journal of Combinatorics
ISSN
1077-8926
e-ISSN
—
Volume of the periodical
2015
Issue of the periodical within the volume
22
Country of publishing house
US - UNITED STATES
Number of pages
20
Pages from-to
1-20
UT code for WoS article
—
EID of the result in the Scopus database
—