Stability analysis of the space-time discontinuous Galerkin method for nonstationary nonlinear convection-diffusion problems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10294136" target="_blank" >RIV/00216208:11320/15:10294136 - isvavai.cz</a>
Result on the web
<a href="http://panm17.math.cas.cz/PANM17_proceedings.pdf" target="_blank" >http://panm17.math.cas.cz/PANM17_proceedings.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Stability analysis of the space-time discontinuous Galerkin method for nonstationary nonlinear convection-diffusion problems
Original language description
This paper is concerned with the stability analysis of the space-time discontinuous Galerkin method for the solution of nonstationary, nonlinear, convection-diffusion problems. In the formulation of the numerical scheme we use the nonsymmetric, symmetricand incomplete versions of the discretization of diffusion terms and interior and boundary penalty. Then error estimates are briefly characterized. The main attention is paid to the investigation of unconditional stability of the method. Theoretical results are demonstrated by a numerical example.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-00522S" target="_blank" >GA13-00522S: Qualitative analysis and numerical solution of problems of flows in generally time-dependent domains with various boundary conditions</a><br>
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Programs and Algorithms of Numerical Mathematics 17
ISBN
978-80-85823-64-6
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
9-16
Publisher name
Matematický ústav AV ČR, v.v.i.
Place of publication
Praha
Event location
Dolní Maxov
Event date
Jun 8, 2014
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—