An asymptotically sharp form of Ball's integral inequality
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10296196" target="_blank" >RIV/00216208:11320/15:10296196 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1090/proc/12505" target="_blank" >http://dx.doi.org/10.1090/proc/12505</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1090/proc/12505" target="_blank" >10.1090/proc/12505</a>
Alternative languages
Result language
angličtina
Original language name
An asymptotically sharp form of Ball's integral inequality
Original language description
We solve the open problem of determining the second order term in the asymptotic expansion of the integral in Ball's integral inequality. In fact, we provide a method by which one can compute any term in the expansion. We also indicate how to derive an asymptotically sharp form of a generalized Ball's integral inequality.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-14743S" target="_blank" >GA13-14743S: Function spaces, weighted inequalities and interpolation II</a><br>
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Proceedings of the American Mathematical Society
ISSN
0002-9939
e-ISSN
—
Volume of the periodical
143
Issue of the periodical within the volume
9
Country of publishing house
US - UNITED STATES
Number of pages
8
Pages from-to
3839-3846
UT code for WoS article
000357042700014
EID of the result in the Scopus database
2-s2.0-84932641103