Locally constrained homomorphisms on graphs of bounded treewidth and bounded degree
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10311992" target="_blank" >RIV/00216208:11320/15:10311992 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.tcs.2015.01.028" target="_blank" >http://dx.doi.org/10.1016/j.tcs.2015.01.028</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tcs.2015.01.028" target="_blank" >10.1016/j.tcs.2015.01.028</a>
Alternative languages
Result language
angličtina
Original language name
Locally constrained homomorphisms on graphs of bounded treewidth and bounded degree
Original language description
A homomorphism from a graph G to a graph H is locally bijective, surjective, or injective if its restriction to the neighborhood of every vertex of G is bijective, surjective, or injective, respectively. We prove that the problems of testing whether a given graph G allows a homomorphism to a given graph H that is locally bijective, surjective, or injective, respectively, are NP-complete, even when G has pathwidth at most 5, 4, or 2, respectively, or when both G and H have maximum degree 3. We complementthese hardness results by showing that the three problems are polynomial-time solvable if G has bounded treewidth and in addition G or H has bounded maximum degree. (C) 2015 Elsevier B.V. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Theoretical Computer Science
ISSN
0304-3975
e-ISSN
—
Volume of the periodical
590
Issue of the periodical within the volume
26
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
10
Pages from-to
86-95
UT code for WoS article
000357222600008
EID of the result in the Scopus database
2-s2.0-84944739309