All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Fully nonparametric regression modelling of misclassified censored time-to-event data

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10312680" target="_blank" >RIV/00216208:11320/15:10312680 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-19518-6" target="_blank" >http://dx.doi.org/10.1007/978-3-319-19518-6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-19518-6" target="_blank" >10.1007/978-3-319-19518-6</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Fully nonparametric regression modelling of misclassified censored time-to-event data

  • Original language description

    We propose a fully nonparametric modelling approach for time-to-event regression data, when the response of interest can only be determined to lie in an interval obtained from a sequence of examination times and the determination of the occurrence of theevent is subject to misclassification. The covariate-dependent time-to-event distributions are modelled using a linear dependent Dirichlet process mixture model. A general misclassification model is discussed, considering the possibility that differentexaminers were involved in the assessment of the occurrence of the events for a given subject across time. An advantage of the proposed model is that the underlying time-to-event distributions and the misclassification parameters can be estimated withoutany external information about the latter parameters.

  • Czech name

  • Czech description

Classification

  • Type

    C - Chapter in a specialist book

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Book/collection name

    Nonparametric Bayesian Inference in Biostatistics

  • ISBN

    978-3-319-19517-9

  • Number of pages of the result

    21

  • Pages from-to

    247-267

  • Number of pages of the book

    465

  • Publisher name

    Springer

  • Place of publication

    Cham

  • UT code for WoS chapter