Extended Formulation for CSP that is Compact for Instances of Bounded Treewidth
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10312822" target="_blank" >RIV/00216208:11320/15:10312822 - isvavai.cz</a>
Result on the web
<a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i4p30" target="_blank" >http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i4p30</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Extended Formulation for CSP that is Compact for Instances of Bounded Treewidth
Original language description
In this paper we provide an extended formulation for the class of constraint satisfaction problems and prove that its size is polynomial for instances whose constraint graph has bounded treewidth. This implies new upper bounds on extension complexity ofseveral important NP-hard problems on graphs of bounded treewidth.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA14-10003S" target="_blank" >GA14-10003S: Restricted computations: Algorithms, models, complexity</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electronic Journal of Combinatorics
ISSN
1077-8926
e-ISSN
—
Volume of the periodical
22
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
14
Pages from-to
1-14
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-84948994220