Catalan pairs and Fishburn triples
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10312943" target="_blank" >RIV/00216208:11320/15:10312943 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.aam.2015.06.007" target="_blank" >http://dx.doi.org/10.1016/j.aam.2015.06.007</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aam.2015.06.007" target="_blank" >10.1016/j.aam.2015.06.007</a>
Alternative languages
Result language
angličtina
Original language name
Catalan pairs and Fishburn triples
Original language description
Disanto, Ferrari, Pinzani and Rinaldi have introduced the concept of Catalan pair, which is a pair of partial orders (S, R) satisfying certain axioms. They have shown that Catalan pairs provide a natural description of objects belonging to several classes enumerated by Catalan numbers. In this paper, we first introduce another axiomatic structure (T, R), which we call the Catalan pair of type 2, which describes certain Catalan objects that do not seem to have an easy interpretation in terms of the original Catalan pairs. We then introduce Fishburn triples, which are relational structures obtained as a direct common generalization of the two types of Catalan pairs. Fishburn triples encode, in a natural way, the structure of objects enumerated by the Fishburn numbers, such as interval orders or Fishburn matrices. This connection between Catalan objects and Fishburn objects allows us to associate known statistics on Catalan objects with analogous statistics of Fishburn objects. As our mai
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Applied Mathematics
ISSN
0196-8858
e-ISSN
—
Volume of the periodical
70
Issue of the periodical within the volume
September
Country of publishing house
US - UNITED STATES
Number of pages
31
Pages from-to
1-31
UT code for WoS article
000361255600001
EID of the result in the Scopus database
2-s2.0-84939799023