Complexity issues for the symmetric interval eigenvalue problem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10313041" target="_blank" >RIV/00216208:11320/15:10313041 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1515/math-2015-0015" target="_blank" >http://dx.doi.org/10.1515/math-2015-0015</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/math-2015-0015" target="_blank" >10.1515/math-2015-0015</a>
Alternative languages
Result language
angličtina
Original language name
Complexity issues for the symmetric interval eigenvalue problem
Original language description
We study the problem of computing the maximal and minimal possible eigenvalues of a symmetric matrix when the matrix entries vary within compact intervals. In particular, we focus on computational complexity of determining these extremal eigenvalues withsome approximation error. Besides the classical absolute and relative approximation errors, which turn out not to be suitable for this problem, we adapt a less known one related to the relative error, and also propose a novel approximation error. We show in which error factors the problem is polynomially solvable and in which factors it becomes NP-hard.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Open Mathematics [online]
ISSN
2391-5455
e-ISSN
—
Volume of the periodical
13
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
8
Pages from-to
157-164
UT code for WoS article
000349284200015
EID of the result in the Scopus database
2-s2.0-84959539782