Existence of solutions for the anti-plane stress for a new class of "strain-limiting" elastic bodies
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10314012" target="_blank" >RIV/00216208:11320/15:10314012 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00526-015-0859-5" target="_blank" >http://dx.doi.org/10.1007/s00526-015-0859-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00526-015-0859-5" target="_blank" >10.1007/s00526-015-0859-5</a>
Alternative languages
Result language
angličtina
Original language name
Existence of solutions for the anti-plane stress for a new class of "strain-limiting" elastic bodies
Original language description
The main purpose of this study is to establish the existence of a weak solution to the anti-plane stress problem on V-notch domains for a class of recently proposed new models that could describe elastic materials in which the stress can increase unboundedly while the strain yet remains small. We shall also investigate the qualitative properties of the solution that is established. Although the equations governing the deformation that are being considered share certain similarities with the minimal surface problem, the boundary conditions and the presence of an additional model parameter that appears in the equation and its specific range makes the problem, as well as the result, different from those associated with the minimal surface problem.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LL1202" target="_blank" >LL1202: Implicitly constituted material models: from theory through model reduction to efficient numerical methods</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Calculus of Variations and Partial Differential Equations
ISSN
0944-2669
e-ISSN
—
Volume of the periodical
54
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
33
Pages from-to
2115-2147
UT code for WoS article
000361391500038
EID of the result in the Scopus database
2-s2.0-84941993813