Old and new results in regularity theory for diagonal elliptic systems via blowup techniques
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10314017" target="_blank" >RIV/00216208:11320/15:10314017 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jde.2015.07.030" target="_blank" >http://dx.doi.org/10.1016/j.jde.2015.07.030</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2015.07.030" target="_blank" >10.1016/j.jde.2015.07.030</a>
Alternative languages
Result language
angličtina
Original language name
Old and new results in regularity theory for diagonal elliptic systems via blowup techniques
Original language description
We consider quasilinear diagonal elliptic systems in bounded domains subject to Dirichlet, Neumann or mixed boundary conditions. The leading elliptic operator is assumed to have only measurable coefficients, and the nonlinearities (Hamiltonians) are allowed to be of quadratic (critical) growth in the gradient variable of the unknown. These systems appear in many applications, in particular in differential geometry and stochastic differential game theory. We impose on the Hamiltonians structural conditions developed between 1972-2002 and also a new condition (sum coerciveness ) introduced in recent years (in the context of the pay off functional in stochastic game theory). We establish existence, Hölder continuity, Liouville properties and regularity estimates for solutions, via a unified approach through the blow-up method.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LL1202" target="_blank" >LL1202: Implicitly constituted material models: from theory through model reduction to efficient numerical methods</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Differential Equations
ISSN
0022-0396
e-ISSN
—
Volume of the periodical
259
Issue of the periodical within the volume
11
Country of publishing house
US - UNITED STATES
Number of pages
45
Pages from-to
6528-6572
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-84941811737