Diffeomorphic Approximation of continuous almost everywhere injective Sobolev deformations in the plane
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10314062" target="_blank" >RIV/00216208:11320/15:10314062 - isvavai.cz</a>
Result on the web
<a href="http://qjmath.oxfordjournals.org/content/66/4/1055.full?sid=c39f3c49-6b82-4be9-ba58-4f0dfd00aad5" target="_blank" >http://qjmath.oxfordjournals.org/content/66/4/1055.full?sid=c39f3c49-6b82-4be9-ba58-4f0dfd00aad5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/qmath/hav030" target="_blank" >10.1093/qmath/hav030</a>
Alternative languages
Result language
angličtina
Original language name
Diffeomorphic Approximation of continuous almost everywhere injective Sobolev deformations in the plane
Original language description
In this note we prove that given a continuous Sobolev $W^{1,p}$ deformation $f$, with $1 < p < infty$, from a planar domain to $er^2$ which is injective almost everywhere, we can find a sequence $f_k$ of diffeomorphisms with $f_k - f in W^{1,p}_0$ such that $f_k to f$ uniformly and in the Sobolev norm.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LL1203" target="_blank" >LL1203: Properties of functions and mappings in Sobolev spaces</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Quarterly Journal of Mathematics
ISSN
0033-5606
e-ISSN
—
Volume of the periodical
2015
Issue of the periodical within the volume
66
Country of publishing house
GB - UNITED KINGDOM
Number of pages
8
Pages from-to
1055-1062
UT code for WoS article
000366636700002
EID of the result in the Scopus database
2-s2.0-84952321457